镪

第二届全国大学生数学竞赛预赛试卷 (数学类,2010)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分.

题	号		1]	111	四	五	六	七	八	总分
满	分	10	15	10	10	15	20	10	10	100
得	分									

注意: 1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效.

- 2、密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3、如当题空白不够,可写在当页背面,并标明题号.

得 分	
评阅人	

一、(本题共 10 分) 设 $\varepsilon \in (0,1)$, $x_0 = a$, $x_{n+1} = a + \varepsilon \sin x_n$ ($n = 0,1,2\cdots$).证明 $\xi = \lim_{n \to +\infty} x_n$ 存在,且 ξ 为方程 $x - \varepsilon \sin x = a$

的唯一根.

得 分	
评阅人	

二、(本题共 15 分) 设
$$B = \begin{pmatrix} 0 & 10 & 30 \\ 0 & 0 & 2010 \\ 0 & 0 & 0 \end{pmatrix}$$
. 证明 $X^2 = B$ 无

解,这里 X 为三阶未知复方阵.

得 分	
评阅人	

三、(本题共 10 分) 设 $D \subset \mathbb{R}^2$ 是凸区域,函数 f(x,y) 是凸函数. 证明或否定: f(x,y) 在 D 上连续.

注: 函数 f(x,y) 为凸函数的定义是 $\forall \alpha \in (0,1)$ 以及 $(x_1,y_1),(x_2,y_2) \in D$,成立 $f(\alpha x_1 + (1-\alpha)x_2,\alpha y_1 + (1-\alpha)y_2) \leq \alpha f(x_1,y_1) + (1-\alpha)f(x_2,y_2).$

得 分	
评阅人	

四、(本题共 10 分) 设 f(x) 在 [0,1]上 Riemann 可积,在 x=1 可导, f(1)=0, f'(1)=a. 证明: $\lim_{n\to+\infty} n^2 \int_0^1 x^n f(x) dx = -a$.

鉄

蜇

例

得 分	
评阅人	

五、(本题共 15 分)已知二次曲面 Σ (非退化)过以下九点. A(1,0,0), B(1,1,2), C(1,-1,-2), D(3,0,0), E(3,1,2), F(3,-2,-4),

G(0,1,4), H(3,-1,-2), $I(5,2\sqrt{2},8)$. 问∑是哪一类曲面?

得 分	
评阅人	

六、(本题共 20 分) 设 A 为 $n \times n$ 实矩阵 (未必对称),对任一 n 维实向量 $\alpha = (\alpha_1, ..., \alpha_n), \alpha A \alpha^T \ge 0$ (这里 α^T 表示 α 的转置),

且存在n维实向量 β 使得 $\beta A \beta^T = 0$. 同时对任意n维实向量x

和 y , 当 $xAy^{\mathsf{T}} \neq 0$ 时有 $xAy^{\mathsf{T}} + yAx^{\mathsf{T}} \neq 0$. 证明: 对任意 n 维实向量 v , 都有 $vA\beta^{\mathsf{T}} = 0$.

· 小:	
华	
年级:	
所在院校:	
姓名:	

得 分	
评阅人	

七、(本题共 10 分) 设f 在区间[0,1]上 Riemann 可积, $0 \le f \le 1$. 求证:对任何 $\varepsilon > 0$,存在只取值

为 0 和 1 的分段(段数有限)常值函数 g(x),使得 $\forall [\alpha,\beta] \subseteq [0,1]$, $\left| \int_{\alpha}^{\beta} (f(x) - g(x)) dx \right| < \varepsilon.$

417

盐

椡

得 分	
评阅人	

八、 $(10 \, f)$ 已知 $\varphi:(0,+\infty) \to (0,+\infty)$ 是一个严格单调下降的连续函数,满足 $\lim_{t\to 0^+} \varphi(t) = +\infty$,且

 $\int_0^{+\infty} \varphi(t)dt = \int_0^{+\infty} \varphi^{-1}(t)dt = a < +\infty, 其中 \varphi^{-1} 表示 \varphi$ 的反函数.

求证: $\int_0^{+\infty} \left[\varphi(t) \right]^2 dt + \int_0^{+\infty} \left[\varphi^{-1}(t) \right]^2 dt \ge \frac{1}{2} a^{\frac{3}{2}}.$